MATH2050C Assignment 5

Deadline: Feb 14, 2018.

Hand in: 3.2 no. 14, 19d; 3.3 no. 5, 10; Supplementary Exercise (2).

Section 3.2 no. 14, 17, 18, 19, 21.

Section 3.3 no. 1, 3, 5, 7, 10, 11, 12.

Supplementary Exercises

1. Show that

$$
\lim_{n \to \infty} \left(1 + \frac{a}{n} \right)^n
$$

exists for every $a > 0$.

2. Consider $\{x_n\}$ where

$$
x_n = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!}, \quad n \ge 1.
$$

Show that

$$
\lim_{n\to\infty}x_n=e.
$$

5.1 Two Most Commonly Used Results in Limits of Sequences

Most limits of sequences can be obtained based on the following two theorems.

Theorem 1 (Limit Theorem). Let $\{a_n\}, \{b_n\}$ be two convergent sequences with $a = \lim_{n\to\infty} a_n$ and $b = \lim_{n \to \infty} b_n$. Then

1. The sequence $\{\alpha a_n + \beta b_n\}$ is convergent and

$$
\lim_{n \to \infty} (\alpha a_n + \beta b_n) = \alpha a + \beta b.
$$

2. The sequence $\{a_nb_n\}$ is convergent and

$$
\lim_{n\to\infty}a_nb_n=ab.
$$

3. In case $b_n, b \neq 0$, the sequence $\{a_n/b_n\}$ is convergent and

$$
\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b} .
$$

In (3), as $b \neq 0$, there is some n_0 such that $b_n \neq 0$ for all $n \geq n_0$. (It suffices to fix n_0 such that $|b_n - b| < |b|/2$ for all $n \ge n_0$.) The assumption $b_n \ne 0$ follows from $b \ne 0$ if we consider the quotient sequence as a sequence beginning from the n_0 -th term, or its n_0 -th tail. Obviously it does no harm as the notion of the limit is concerned with "limiting behavior".

This theorem shows that limits of sequences behave very nicely under algebraic operations.

Theorem 2 (Squeeze Theorem). Let $a_n \leq c_n \leq b_n$ for the sequences $\{a_n\}, \{b_n\}, \{c_n\}$ for all $n \geq n_0$. In case $a = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$ exists, then $\{c_n\}$ is convergent and $\lim_{n \to \infty} c_n = a$ too.

It is also called the **Sandwich Rule**. In applications, it is very often that $\{a_n\}$ is the zero sequence, ${c_n} = { |x_n - x| }$ and ${b_n}$, $b_n \to 0$, so that we can conclude $\lim_{n\to\infty} x_n = x$. The Sandwich Rule enables us to simplify the expression of the sequence under consideration.

5.2 Some Examples of Limits

We summarize some basic and non-trivial results on how fast some sequences go to infinity in Theorem 3. In the following we use the notation

$$
\{a_n\} << \{b_n\}, \quad \text{or } a_n << b_n \;,
$$

to mean

$$
\lim_{n \to \infty} \frac{a_n}{b_n} = 0 ,
$$

for the sequences $\{a_n\}$ and $\{b_n\}$.

Theorem 3. For each $k \geq 1$ and $a > 1$,

$$
n^k \ll a^n \ll n! \ll n^n \; .
$$

Proof. First, $\lim_{n\to\infty}\frac{n^k}{n^k}$ $\frac{n}{a^n} = 0$. We use Ration Test

$$
\frac{(n+1)^k/a^{n+1}}{n^k/a^n} = \left(1 + \frac{1}{n}\right)^k \frac{1}{a} \to \frac{1}{a} < 1,
$$

as $n \to \infty$. Fix a number $r \in (1/a, 1)$, we can find a large n_0 such that this quotient is less than r for all $n \geq n_0$. The desired result follows from the Ratio Test.

Next, $\lim_{n\to\infty} \frac{a^n}{n!}$ $\frac{a}{n!} = 0$. Again this follows from the Ratio Test. Third, for $n \geq 2$,

$$
\frac{n!}{n^n} = \frac{1}{n} \frac{2}{n} \cdots \frac{n}{n} \le \frac{1}{n},
$$

thus

$$
\lim_{n \to \infty} \frac{n!}{n^n} = 0
$$

by Squeeze Theorem.

We also note the following limits.

Theorem 4. For $a > 0$,

$$
\lim_{n \to \infty} a^{1/n} = \lim_{n \to \infty} n^{1/n} = 1.
$$

Proof. It is clear that $n^{1/n} > 1$ for $n \ge 2$. Write $n^{1/n} = 1 + k_n$ and, by Binomial Theorem,

$$
n = (1 + k_n)^n = \sum_{j=0}^n {n \choose j} k_n^j \geq {n \choose 2} k_n^2 = \frac{n(n-1)}{2} k_n^2.
$$

Consequently,

$$
\frac{2}{n-1} \ge k_n^2 , \quad \text{or } k_n \le \sqrt{\frac{2}{n-1}},
$$

which tends to 0 as $n \to \infty$. Hence

$$
\lim_{n \to \infty} n^{1/n} = \lim_{n \to \infty} (1 + k_n) = 1.
$$

When $a > 1$, $a^{1/n} > 1$ for all n. For $n \ge a$, $1 \le a^{1/n} \le n^{1/n}$ and it follows from Squeeze Theorem that

$$
\lim_{n \to \infty} a^{1/n} = \lim_{n \to \infty} n^{1/n} = 1.
$$

When $a < 1$, $b = 1/a > 1$ and by Limit Theorem

$$
\lim_{n \to \infty} a^{1/n} = \frac{1}{\lim_{n \to \infty} b^{1/n}} = 1.
$$

When $a = 1$, the result is trivial. Everything done.